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Summary 
The INSIDER project (2017-2021, (LGI, 2017)) developed and validated a new and improved 
integrated characterisation methodology and strategy during nuclear decommissioning and 
dismantling operations (D&D) of nuclear power plants, post-accidental land remediation or nuclear 
facilities under constrained environments. One of the important outcomes of this strategy 
development is a statistical approach guideline that is transformed into a web tool, which serves as 
a user-friendly interactive interface. 
The web tool, named STRATEGIST (Sampling Toolbox for Radiological Assessment To Enable 
Geostatistical and statistical Implementation with a Smart Tactic), intends to guide the expert in 
handling the problem definition and applying a strategy based on proper data analysis and 
sampling design.  
This document is a blueprint for the STRATEGIST web tool: https://strategist.sckcen.be/. 
 

  

https://strategist.sckcen.be/
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1 Introduction 

STRATEGIST 

 

Sampling Toolbox for Radiological Assessment To Enable Geostatistical and statistical 
Implementation with a Smart Tactic 

 

 Guides the expert in handling the problem definition and applying a strategy based on 
proper data analysis and sampling design. 

 Promotes the application of an integrated characterisation methodology and strategy 
during nuclear decommissioning and dismantling operations (D&D) of nuclear power plants, 
post-accidental land remediation or nuclear facilities under constrained environments. 

 Relies on state-of-the art statistical techniques for preliminary analysis and data 
processing. 

 

The STRATEGIST web tool provides concise descriptions, lists relevant theoretical references, 
case studies and software implementations for helping the end user to get started, using the 
following diagrams (Figure 1):  

 The overall strategy or generic workflow (Section 2), outlining the general steps between a 
request for initial characterization and reporting of the final results, after all objectives have 
been reached. 

 The data analysis and sampling design workflow (Section 3).  

 Venn diagram of the main methods for data analysis (Section 4) 

 Venn diagram of the main methods for sampling design (Section 5).  

 

How should this strategy be applied? 

 For the application of this strategy, we recommend all involved parties to familiarize 
themselves with it, or at least the general workflow (Section 2). This will ease the 
discussion on the different objectives and constraints, and create more realistic 
expectations on the work that has to be done.  

 People involved in the data analysis, and especially the selection of the appropriate 
methods, should at least have some general notions on all different types of methods 
discussed here, to enable proper judgement of the different options, and selection of the 
most appropriate one.  

 Please take into account the following important remarks: 
o This strategy is NOT intended to provide the nonspecialist with a comprehensive 

mode of operation for the complete process of initial nuclear state characterisation 
in view of decommissioning. 

o This is only a guideline, and should not be blindly followed. Special circumstances 
often ask for special solutions, which cannot all be covered by a generic strategy. 

o This strategy can be used to inform people with no or very little experience in 
statistics about the complexity of the issue, and provide them some relevant 
background, but it cannot justify not involving people experienced in the matter. 

 

For the vocabulary used in thei STRATEGIST tool we refer to the VIM (BIPM, IEC, IFCC, ILAC, 
ISO, IUPAC , IUPAP et OIML, International vocabulary of metrology – Basic and general concepts 
and associated terms (VIM), 3rd edition éd., Joint Committee for Guides in Metrology, JCGM 
200:2012, 2012). 
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Figure 1. Overview of the diagrams illustrating the different parts of the developed strategy for data 
analysis and sampling design in the framework of initial nuclear site characterization in view of 

decommissioning. 

 

In section 6 you can find details on the implementation of the strategy in four different use 
cases as well as a summary of the lessons learnt. 
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2 Overall strategy 

While the data analysis and sampling design methods that can be applied depend strongly on the 
situation and specific goals of initial nuclear site characterization, the overall strategy often takes 
the form of the generic workflow illustrated in Figure 2. 

The starting point we consider here is the request for initial nuclear site characterization to a 
radiological characterization team. Such a request can come from different kinds of actors, and can 
come with different amounts of detail. Following this request, a clear list of all objectives and 
identification of the constraints is absolutely required, and might require some iterations with the 
applicant to agree on the goals and priorities: 

 Very clear and quantifiable objectives allow the development of an effective sampling plan, 
including the selection of appropriate measurement techniques and the up-front definition of 
criteria for the measurements (e.g. detection limits, uncertainties). 

 On the contrary, the absence of explicit objectives complicates all aspects of designing and 
implementing the characterization strategy and the planning down to the selection of 
appropriate measurement techniques, determination of minimal detection limits, etc. 

Decommissioning is a multi-disciplinary operation and the involvement of specialized staff 
performing the next stages of the decommissioning project can be highly beneficial. Technical 
feasibilities/constraints in the next decommissioning stages might strongly influence the initial 
characterization program. Effective communication and a common basis of understanding are 
essential. Extensive compartmentalizing might result in misinterpretation, non-optimal solutions 
and wrong decisions. 

The highest-priority objective should be tackled first in most cases, and the cycle along the 
different objectives is started. 

If feasible, data sets containing large amounts of data below detection limit should be avoided for 
a proper statistical analysis and whenever possible tackled during the strategy development. 
However, this is not always possible; for example due to low threshold values, the limitations of 
measurement techniques, but also due to unclear initial objectives or potentially changing 
objectives or thresholds during the characterisation process. Depending on the case, it might be 
very wise to use advanced statistical methods for dealing with samples below detection limit ((Kim, 
Hornibrook, & Yim, 2020), (France Patent No. 20 10176, 2020)). 

All prior information that is available and relevant for the investigated case should be gathered as 
a first step (historical records, mappings, incidents, etc.). If some radiological data would already 
be available, a first analysis to check if the objective is achieved is probably very useful, even if 
the results come with lots of uncertainty. In D&D, such prior information is nearly always available. 
We are working on historical installations and/or sites that have been shut down, or are going to 
be. Therefore, there is always a history of the exploitation phase, with available data, so this initial 
data-gathering step is of vital importance. 

The data analysis succeeding the data collection consists, in general, of the following steps: Pre-
processing, exploratory data analysis, the actual data analysis, and potentially a post-
processing step. If the objective is not achieved, a sampling design should be proposed using 
the most appropriate method(s) given all prior information and the data analysis result. Following 
the design, the corresponding characterization campaign should be performed. Additional 
characterization can reveal unexpected issues, and often revisiting the gathering of prior 
information is then useful. After the additional characterization, the updated dataset is again 
analysed, and this iterative procedure is continued until the objective is finally reached. The entire 
process can then be repeated to tackle the remaining objectives. Once all objectives have been 
achieved, the initial characterization study should be reported in a transparent way, making clear 
what has been measured, which results were obtained from the data analysis, and how large the 
corresponding uncertainty is. The different steps are more extensively discussed one by one 
below. 
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Performing a radiological characterization program in two or more stages/phases can be efficient 
and effective to tackle areas with higher uncertainties. Unfortunately, this might not always possible 
due to planning constraints. 

 

 

Figure 2. Overall strategy flow chart. See Annex A for a larger version. 

 

2.1 Request for initial characterization 

The starting point we consider here is the request for initial nuclear site characterization to a 
radiological characterization team. Such a request can come from different kinds of actors, and can 
come in different amounts of detail. In many cases however, it probably comes with a description 
of the general purpose that the initial characterization should serve, but this does not justify 
getting started right away with collecting data, performing data analysis and sampling design. 
Instead, the request and the general purpose should be discussed thoroughly, so all involved 
parties are on the same page, and the request and general purpose can be translated to specific 
objectives and constraints in a next phase. 

Once the specific objectives and constraints have been defined, feedback from the applicant is 
required, potentially within an iterative process. The request can then be reformulated, or more 
resources can be made available, if the objectives would not meet the expectations of the 
applicant, or the constraints would interfere with the feasibility of the required work. 

 

2.2 Define objectives 

As introduced above, the first important task should be the translation of the request for initial 
characterization into a list of specific objectives that have to be fulfilled. Objectives should be 
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well defined in order to enable well-informed decision making, once they are reached. The lack 
of clear objectives can result in useless data, over-characterization and a waste of budget, time 
and efforts. In principle, every objective can be expressed by defining two aspects: 

 

1. Which variable(s) of interest is (are) to be investigated? 
2. Which statistical indicator(s) should be quantified? 

 

In practice however, these aspects can take very different forms. We provide a non-exhaustive list 
below, to provide an idea on the range of possibilities: 

 

Variables of interest 

 Radiological status qualification 
o Location of fixed and non-fixed 

contamination / activation 
o Dose rates / equivalent doses 

 Material inventory quantification 
o Subject under study 

 Batch of discrete objects 
 2D surface 
 3D volume 

o Classification (waste (type), 
(un)conditional release) 

o Mass-, volume- or area-specific 
activities 

o Isotopic composition (which 
radionuclides, non-radioactive 
elements, scaling factors) 

o Assessments through DA 
and / or NDA 

 Physico-chemical conditions 
o Hazardous substances 

Statistical indicators 

 Measures of central tendency 
o Mean 
o Median 
o Mode 

 Measures of dispersion 
o Standard deviation / variance 
o Extremes (minimum, maximum) 
o Quantiles (IQR, percentiles) 

 Measures of association 
o Covariance / correlation 

 Measures of shape 
o Skewness 
o Kurtosis 

 Measures of risk 
o Probability of exceeding a 

threshold 

 

 

 

 

If multiple objectives are defined, a prioritization should be agreed on as well, as in most cases 
not all the work can be executed in parallel. This is especially true for constrained environments. 
On the other hand, reaching certain major objectives might already provide the necessary 
information for accomplishing other objectives as well. 

 

2.3 Define constraints 

Next to the definition of objectives, a list of constraints that have to be honoured has to be created 
as well. Some constraints can be part of the initial request. These are often related to the aspects 
managed by the applicant, like the required timing and available budget. Other constraints are 
dictated by the legislation that is applicable, and/or the control bodies that oversee the executed 
work. Furthermore, the constrained environment itself might pose additional operational 
constraints as well. We provide a non-exhaustive list below, to provide an idea on the range of 
possibilities: 

 Budget 

 Timing 

 Operational constraints 
o Non radiological & radiological 

hazards & safety aspects 

o Radiation levels and removable 
contamination (ALARA) 

o Worker protection 
o Available equipment 
o Accessibility 



D3.7 - Statistical approach guide 

 
 

GA n°755554   Page 11 of 45 

o Cross contamination during 
sampling 

o Measurement / lab procedures 
 Minimum number of 

replicates 
 Required volume of 

material 
o QA, QC, QM 

 Legislation 
o Decontamination requirements 
o Decommissioning requirements 

(temporary storage, treatment) 
o Sampling requirements 

o Tolerable risk 
o Tolerable uncertainty 
o Recycling options 

 

 

 

 

 

 

 

 

2.4 Select highest-priority objective 

As it is often difficult in constrained environments to perform different tasks in parallel, the highest-
priority objective should be addressed first. The priorities should be defined together with the 
objectives, in order to let the iterative process run smoothly. It is very likely that by addressing 
major objectives, the necessary data will also be gathered for fulfilling other, minor objectives. In 
that sense, it is relevant to stress here that working on a single objective does not at all mean 
that the other objectives can be temporarily disregarded. Instead, potential synergies between 
different objectives should be checked at every step of the process, in order to reduce the 
amount of data that has to be gathered, and/or the number of iterations required to reach the 
predefined goals. 

 

2.5 Gather pre-existing records/data 

A first step in tackling a specific objective is the collection of pre-existing records and/or data. 
These types of information can be extremely useful for framing the problem at hand, by creating 
reasonable expectations on the site and materials to be investigated (in terms of possible 
radiological hazards and potential contamination/activation characteristics), and can often provide 
a basis for more efficient sampling than a purely random approach. If sufficient quantitative data 
is already available, and the quality is adequate, also a first data analysis step can be performed, 
which again allows for a more appropriate sampling design, if additional data would be required. 
The types of possibly useful information are manifold, however, so we provide only a non-
exhaustive list below, to provide an idea on the range of possibilities:

 Site context 
o Current activities 
o Plans (initial but preferably “as-

built”) 
o Maps 

 Historical archives and/or data bases 
o Operation history 
o Functional analysis 
o Lists of incidents 
o Routine occupational exposure 

measurements 
o Production records 

o Operational waste 
characterization 

 Collective knowledge of the employees 
o Interviews 
o Testimonies 
o Site visits 

 Previous studies 
o Characterization campaigns 
o Calculations/modelling exercises 
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2.6 Is data sufficient for analysis? 

The pre-existing data and/or records might not provide sufficient amounts of quantitative data, 
or the data quality might not be adequate, justifying a first data analysis step. They might however 
provide very relevant qualitative information that can be leveraged directly for sampling 
design. In such cases, the first data analysis step can effectively be skipped, and a first sampling 
design step and characterization campaign should be performed, after which the normal iterative 
procedure can be followed. 

 

2.7 Can more samples be collected? 

It is possible that the collection of additional samples is not an option. There might be various 
reasons for this (e.g. budgetary, safety, etc.), but these should always be part of the identified 
constraints. In such cases, we are obliged to work with the samples and/or data that is available, 
and a data analysis has to be performed anyway. The uncertainties related to the likely very 
conservative analysis should then reflect the lack of samples required for a more adequate, 
properly data-driven analysis. 

 

2.8 Data analysis & sampling design 

The data analysis and sampling design steps make up the heart of this strategy. Due to their 
importance and complexity, they are more thoroughly discussed in Section 3. The basic idea here 
is that all the available information serves as an input to a pre-processing and exploratory 
data analysis phase, after which the actual data analysis is performed. Here, an appropriate 
statistical method should be used. Afterwards, post-processing of the results may be required in 
order to judge if the objective is achieved or not. If it is not, the results can be used to inform the 
sampling design for a new characterization campaign, after which the process can be repeated. 

 

2.9 Perform characterization campaign 

When a sampling design is created, the corresponding characterization campaign should of course 
be performed. The two are clearly split into two separate steps here, as the sampling design 
should basically represent how we want the samples to be taken, in theory, according to all the 
practical limitations and constraints that are known to us. In practice, however, all kinds of 
unexpected issues might be encountered which make that the characterization campaign will 
not be able to honour the sampling design perfectly. The deviations should be discussed with all 
involved parties, if possible, and properly documented, in order to make the most out of the data 
gathered. 

 

2.10 Are there more objectives? 

After realizing an objective, the remaining objectives should be revisited first, accounting for the 
newly gathered data (if any). Some other objectives might in fact be fulfilled by the new data or 
available knowledge. The remaining highest-priority objective should then be selected, and the 
whole procedure starts again. 

 

2.11 Report results on initial characterization 

After tackling all objectives, the results should be reported in a way that makes clear how the 
problem was approached, which assumptions were made (and hence what the limitations are 
of the reported study), and what data was used. In this way, the applicant can have a clear idea 
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on the uncertainty sources that are covered by the obtained results. This provides a solid basis 
for determining the next steps in planning the decontamination or decommissioning process. 
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3 Data analysis & sampling design 

While the overall strategy often takes the form of the generic workflow, as illustrated in Figure 2, 
the data analysis and sampling design depend strongly on the situation, the available data and 
the specific goals and constraints. We however attempt to bring some structure to the typical 
workflow here, by dividing the process into a pre-processing step, the exploratory data analysis, 
the actual data analysis, potentially a post-processing step and the sampling design, as illustrated 
in Figure 3. Checking if the objective is achieved, and whether the constraints are violated, is of 
course also necessary at some point. 

The pre-processing step is still relatively straightforward, and encompasses checking for errors 
and outliers, possibly making corrections and removing parts of the data irrelevant to the problem 
at hand. The exploratory data analysis can also still be structured in a way that it is applicable to 
most problems in D&D for constrained environments, by looking into four aspects of the data: 

 

1. Is this a univariate or multivariate problem? 
2. Is this a problem involving spatial trends? 
3. Is this a problem involving spatial structure? 
4. Is this data requiring robust methods? 

 

We use the outcome of the exploratory data analysis, i.e. the answers to the above questions, to 
bring some structure in the range of methods for the actual data analysis, possibly applicable to 
the problem at hand. As the range of situations and methods is vast, we cannot discuss every 
possible road to selecting a specific approach. This only provides some guidance on the type of 
methods to use, and the expertise of the user of this strategy comes in at this point to make a final 
decision, based on the individual method descriptions, suggestions and remarks contained in this 
document. 

A post-processing step can be required to translate the results obtained into the required 
information for checking if the objective is achieved. If it is not, a sampling design approach has 
to be selected. Similar to the data analysis, we can also only provide general recommendations 
here, and use a classification in terms of: 

 

1. Is this sampling design probabilistic or not? 
2. Are the selection probabilities equal or not? 

 

We do try to relate the different approaches to the four aspects of the data defined above as well, 
in the list of approaches in Section 5. When a sampling design is proposed, a final check on 
violation of the defined constraints should be made, before moving to the corresponding 
characterization campaign. The different steps outlined here are further discussed in detail one by 
one below. 
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Figure 3. Data analysis & sampling design flow chart. See Annex B for a larger version. 

 

3.1 Pre-processing 

3.1.1 Check the data for errors 

Gross errors or anomalous measurements of the data set may arise e.g. due to: 

 Transcription mistakes, 

 Data coding errors, 

 Undetected equipment failures or malfunction, 

 Calibration mistakes, 

 Data evaluation errors, and 

 Undetected interfering signals. 

 

The selection of a good measurement and data collection strategy should be able to minimize the 
number of data errors, but cannot fully avoid them. Therefore, a proper data quality assurance 
procedure is absolutely required. Such a procedure can take various forms, depending on, e.g.: 

 The objective of the measurements, 

 The number of measurements within one evaluation, 

 The measurement method itself, 

 The way of data transfer, and 

 The possible automation of data quality checks. 
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Depending on the objective of the measurements, the data quality assurance procedure should be 
documented appropriately. Common quality assurance measures are: 

 Verification of all necessary data transfer and data evaluation software, 

 Periodic (yearly or monthly base) detailed technical inspection of measurement devices and 
data transfer systems, 

 High frequency cross-check of measurement device functionality,  

 Verification of calibration procedures, 

 Periodic (daily base) calibration, 

 Random countercheck of data transcription processes (usually with increasing frequency in 
the case errors are found), 

 Certification procedures for external laboratories, 

 Blind tests and interlaboratory comparisons, and 

 Automated data checks (e.g. checking sign, order of magnitude or compare with realistic 
range of results). 

 

The objective of the data quality assurance is to minimize the occurrence of errors and ensure 
proper statistical inference and adequate decisions can be made based on the data. 

 

3.1.2 Remove or correct errors 

Data errors are, unlike outliers, not acceptable at all in a data set. This means they have to be 
removed from the data set, flagged as missing values, or if this would result in a significant loss 
of information, the erroneous values can be imputed. In some cases, however, correction of the 
errors might still be possible, when the uncorrupted raw data would still be available. One example 
is a wrong calibration of certain equipment. If the raw data is still available, it can be re-processed 
after the calibration is corrected. 

For errors in a multivariate context, imputation techniques can be used to complete the dataset if 
required. If such corrections are not possible, or if they tend to affect the relation between 
variables, the original dataset may be used in a restricted manner, with missing values, within an 
available case analysis approach. 

 

3.1.3 Check the data for outliers 

After removing, flagging and/or correcting the errors in the data, the remaining outliers (a.k.a. 
natural outliers) are observations with a unique combination of characteristics identifiable as 
distinctly different from the other observations. However, the distinction between outliers and 
extreme values in a probability distribution for a random variable, which occurs quite naturally but 
not frequently, is not always straightforward. The most straightforward way of detecting outliers is 
by visualizing your data. If this is not straightforward, dimensionality reduction techniques might be 
of help (see 3.2.1.2). Many approaches that are more specialized exist however, but discussing 
these is out of scope here. 

 

3.1.4 Check representativeness of outliers 

Outliers cannot be categorically characterized as either beneficial or problematic, but instead must 
be viewed within the context of the analysis and should be evaluated by the types of information 
they may provide. When beneficial, outliers – although different from the majority of the sample – 
may be indicative of characteristics of the population that would not be discovered in the normal 
course of analysis. In contrast, problematic outliers, not representative of the population, are 
counter to the objectives of the analysis, and can seriously distort statistical tests. 
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3.1.5 Remove or correct outliers 

If the outliers are natural, not artificial in any kind of way, and if they are representative of the 
problem at hand, they should remain part of the dataset, in an unaltered way. However, if they 
would not be representative, and if this would bias the analysis later on, they are better dealt with 
at this point. Similar to the uncorrectable errors, they can be removed from the dataset, flagged 
as missing values, or the values can be imputed in some way to make most out of the available 
data. 

Censored data do not necessarily belong to the class of outliers, but it is sometimes useful to treat 
them in the same way. Different methods exist to work with left- and/or right-censored data, but if 
the censored data only represents a minor and irrelevant part of the sample, or other methods are 
to be used, they can also be removed, flagged as missing or imputed. A description of the use of 
censored data is given for example by (Helsel & Cohn, 1988). 

 

3.1.6 Check representativeness 

A final check of the representativeness of all remaining data at this point is in order to identify 
potential parts of the dataset not relevant to the problem at hand, which may overly complicate the 
subsequent analysis, or bias the results. Only the representative part should be retained. 

Furthermore, also the representativeness of small sample sizes, for making inference on the 
entire population, can be checked using more formal methods here (see (Pérot, et al., 2019), but 
this should not break the flow of the analysis, as issues with small sample sizes should be reflected 
in the results of the data analysis later on. 

 

3.2 Exploratory data analysis 

After the pre-processing phase, the data should be ready for analysis. The exploratory analysis 
aims at identifying certain aspects of the data in order to determine the class of methods that is fit 
to perform the actual analysis. 

 

3.2.1 Univariate versus multivariate 

Univariate and multivariate data analysis can differ greatly in terms of complexity, and 
simplifying a problem to the univariate case, or a set of independent univariate problems is often 
beneficial. If this is not possible, however, appropriate methods have to be used that can account 
for correlations between different variables, or more complex relationships. 

 

3.2.1.1 Check for significant correlations 

Pairwise scatterplots provide a straightforward way to visualize the data and check if significant 
correlations are present or not. When these are not conclusive however, e.g. in case of low 
correlations or little data, more formal assessments on the correlations can be made. One 
approach is the use of parametric tests that provide a more objective view on the presence of 
correlations. These do however rely on different assumptions on the underlying probability 
distributions of the sample that is investigated. The test statistic for Pearson’s product moment 
correlation coefficient follows for example a t distribution with the number of samples minus two 
degrees of freedom, if the samples follow independent normal distributions. These kind of tests can 
be easily performed in many different software packages. If it is difficult to justify the assumptions 
made however, non-parametric tests can be performed as well, for instance based on 
resampling. 

 

3.2.1.2 Can dimensionality reduction simplify the problem? 

In case significant correlations seem to be present, they should be accounted for. One special way 
of achieving this is by reformulating the original problem with the correlated variables in terms of a 
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set of uncorrelated latent variables or principal components. Methods that are suited for achieving 
this are different kinds of factor analysis, principal component analysis and its supervised variant 
partial least squares. We refer to (Pérot, et al., 2019) for a brief description on these methods. 

The dimensionality of the problem is typically reduced in order to keep the analysis manageable, 
and focuses on the latent variables or principal components explaining most of the variance 
within the data. 

 

3.2.2 Spatial trends 

The presence of spatial trends can have a significant impact on the sampling strategy to follow, 
and therefore we consider it here as a separate aspect of the available data or problem at hand. 
When a large-scale trend goes together with spatial structure on top of it, methods exist to handle 
both at the same time. However, in such cases, it is still useful to check explicitly for the presence 
of a trend, so the appropriate methods can be chosen, and the sampling design is done accounting 
for the trend (if it would relate to the objective). There are several approaches for trend detection: 

 

 In many cases, the presence of a trend is obvious from the historical background and/or 
the process that has generated the contamination or activation that is being studied. Even 
without any data, such expected trends are very relevant, and influence the sampling 
design. Typical examples are trends with: 

o The distance from a source of radiation. 
o The distance from a spill location. 
o The distance along the travel path of the contaminants. 

 

 If data is available, looking at a map visualizing measurement results is often sufficient to 
confirm the presence of expected trends. If sufficient data points were gathered, even 
unexpected trends might be discovered by plain visual inspection. In addition, 
visualization of the data along a one-dimensional path (a.k.a. swath plots) through the 
investigated area or volume might help in recognizing more complex trends. When there is 
doubt however, some specific quantitative methods can be employed. 

 The experimental variogram can be used for the detection of spatial trends. (Journel & 
Huijbrechts, 1978) suggest that an experimental variogram increasing as rapidly as |h|² for 
large distances h most often indicates the presence of a trend. For a stationary random 
field, it is actually expected that the spatial variance stabilizes at a certain distance and 
equals the variance of the data. If this is not the case, a trend is probably present. 

 Another approach consists in using Kendall’s τ test (Kendall, 1938) to measure the 
probability of concordance minus the probability of disconcordance. The observation pairs 
Z(x) and Z(x + h) are concordant if, for the one-dimensional case, an increase in the spatial 
coordinate corresponds to an increase in the observed value. If it corresponds to a 
decrease in the observed value, they are disconcordant. Kendall’s τ can be calculated for 
any spatial direction (e.g. distance from the source of radiation). If Kendall’s τ test is 
combined with a significance test, it can indicate in which directions significant spatial 
trends exist. 

 Linear regression models, and in certain cases extensions like generalized additive 
models (for non-linear situations) or robust linear models (in the presence of outliers), can 
provide indications on the presence of trends as well. This in fact already relates a lot to the 
data analysis step in case of a trend, but preliminary testing of these models focusing on 
the model coefficient statistics, can be useful as well. 

 

3.2.3 Spatial structure 

A first qualitative understanding of spatial continuity is performed on the base map: location of hot 
spots, size of the impacted areas (activated, contaminated), spatial distribution of high and low 
values, etc. Then, in order to quantify more precisely the spatial structure of the phenomenon two-
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point statistics are typically used. They allow the characterisation of the spatial continuity, as a 
gradient for instance, or more adequately for geostatistics, by the variogram that describes the 
evolution of variability between pairs of points as a function of distance. This change of variability 
with distance can have different forms: 

 It can be constant, which is an indication that there is no spatial structure, or at least it is not 
present at the considered lag distances. 

 In case of spatial structure, it typically starts at a zero or a low value for zero distance, and 
then increases as the distance increases. When no trend is present, it is then normally 
expected to stabilize approaching a certain distance (the effective range or correlation 
length), and remain constant after that. 

 It might not stabilize, or show a decrease again at some point, which are indications of 
trends or periodicity. 

 

The existence of spatial structure, or auto-correlation (i.e. the variability is lower at shorter 
distances) makes geostatistics an approach relevant to correctly analyse and model the spatial 
behaviour of the variable of interest. 

Large-scale phenomena, or trends, can be modelled and removed (subtracted) from the data 
before the detailed analysis of spatial structure. That way only local variations are analysed 
through the variography. 

 

3.2.4 Robust methods 

Different aspects of the data can give rise to the need for working with robust methods. One 
example is the case of small data sets. Small data sets allow little inference about the studied 
population, and the analyses should therefore come with large uncertainties. Typical statistical 
methods are however often not designed to work with small data, and the use of special robust 
tools might be required. In case there is considerable prior knowledge on the problem at hand, 
Bayesian methods can be invoked to make sure this is accounted for as well. Furthermore, when 
the underlying probability distributions of the data are not known and difficult to infer, non-
parametric methods should be used, and when outliers are present, but affect the analysis of the 
mean behaviour too much, methods robust to outliers are available as well. 

Fixing hard rules for determining if such methods are required or not is however not 
straightforward, and out of scope here. Instead, the user of this strategy should look at all facets of 
the problem at hand and its context, and his/her expertise should come into play. 

An example are the robust inequalities, applicable without knowing the probability distribution of 
the studied variable, discussed by (Pérot, et al., 2019). In a practical radiological context, these can 
be used to estimate the quantity of contaminants, which does not exceed a specific threshold 
value, based on a few contaminant measures. 

 

3.3 Data analysis 

For organizing the different data analysis techniques, we make use of the Venn diagram 
presented in Figure 4. The different categories we use are based on the four aspects of the data, 
studied in the exploratory data analysis step: The requirement for multivariate methods, the 
presence of spatial structure, the presence of trends, and the requirement for robust methods. The 
methods that are able to handle two, three or all aspects, are listed in the corresponding 
intersections. It is also possible none of these aspects apply, in which case we list the method 
outside of the diagram. The individual methods are briefly introduced one by one in Section 4. In 
case it would not be clear which method to use, or if multiple methods are mentioned in the 
relevant section of the diagram, it is recommended to go through these brief introductions first. If it 
would still be unclear what method to use, further reading is recommended, or the consultation 
of a more experienced person. 
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Figure 4. Data analysis Venn diagram. See Annex C for a larger version. 

 

3.4 Postprocessing 

The data analysis step does not always result in a direct answer to the question at hand, or direct 
information on the achievement of the target objective. Some postprocessing might be required, for 
instance, to 

 

 Average the results over certain areas, volumes or masses, 

 Change the spatial support of the outcome to one relevant for the objective, 

 Compare estimates of variables of interest with e.g. regulatory thresholds, 

 Merge the information related to different isotopes, or types of radiation, 

 Interpret the outcome in terms of safety or cost, 

 etc. 

 

3.5 Is the objective achieved? 

If the objective and constraints were clearly defined at the start, including the level of confidence 
that should be used in a probabilistic context, the answer to the question “Is the objective 
achieved?” should be as simple as “Yes” or “No” after the post-processing step. If achieved, one 
can move on to the next objective, if not, more data should be collected. 
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4 List of methods for data analysis 

The different types of methods are discussed here one by one, in no particular order. All methods 
mentioned on the Venn diagram in Figure 4 are discussed separately or are part of a broader type 
of methods, in which case they are mentioned in the text. The expert can select one or more 
suitable methods from the Venn diagram. The same problem can typically be tackled using various 
methods. 

 

Validation techniques for assessing the results obtained 

Cross-validation can be used to assessing how the results of a statistical analysis will generalize to 
an independent data set. The model is initially fit on a training dataset, which is a set of values 
used to fit the parameters of the model. Successively, the fitted model is used to predict the 
responses for the observations in a second dataset called the validation dataset. This hold back 
sample of the full data should be used to give an unbiased estimate of the skill of the final tuned 
model by comparing or selecting between final models. A dataset can be repeatedly split into a 
training dataset and a validation dataset. Cross-validation combines (averages) measures of 
fitness in prediction to derive a more accurate estimate of model prediction performance. We 
distinguish two types of cross-validation: exhaustive and non-exhaustive cross-validation. 
Exhaustive cross-validation methods are cross-validation methods which learn and test on all 
possible ways to divide the original sample into a training and a validation set. Non-exhaustive 
cross validation methods do not compute all ways of splitting the original sample. 

Attention should be paid to the re-estimation of extreme values as they can significantly bias the 
cross validation in the case of skewed distribution. As a consequence, a model can be preferred 
globally from cross-validation by better honouring the extreme values whereas the characterisation 
objective focuses on a low threshold where the model is not satisfactory. 

 

Uncertainty & sensitivity analysis  

The final outcome is anyhow affected by a certain degree of uncertainty, which often strongly 
impacts the decision-making. Quantifying the uncertainty on the variables of interest is usually a 
multi-dimensional and therefore complex task. Ideally, a Bayesian inference approach would be 
preferential compared to Monte Carlo error propagation or an approach based on first-order 
Taylor expansion. The latter might suffer from important drawbacks related to non-Gaussian 
distributions and non-linear expressions, or the omission of systematic uncertainties. Although 
applying a Bayesian inference approach or even a Monte Carlo error propagation would be the 
best technical choice, it might not be particularly suitable due to its complexity and the individual 
character of each model and case. For a one-time case, the following alternative options could 
be considered:  

 A qualitative description, examining the most important and uncertain assumptions without 
performing a quantitative analysis. 

 A scenario comparison, comparing two or more alternative scenarios (i.e. best case & worst 
case scenario). 

 A once-at-a-time approach, introducing one at a time changes (i.e. minimum and maximum 
values for certain parameters) and comparing with a given baseline. 

In addition, sensitivity analysis is a valuable instrument, which enriches the quantitative analysis of 
impact with a deeper investigation and identification of the sources of uncertainty. Among the most 
relevant techniques:  

 Screening methods (Morris, 1991, Campolongo et al., 2011). 

 Non-parametric or regression-based approaches (Saltelli & Marivoet, 1990; Helton, 1993). 

 Variance-based methods (Sobol’, 1993; Saltelli et al., 2008; Iman & Hora, 1990; Sacks et 
al., 1989). 

 Spectral methods (Cukier et al., 1973; Saltelli et al., 1999; Sudret, 2008; Shao et al., 2017), 
and 
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 Moment-independent importance measures (Park & Ahn, 1994; Plischke et al.,2013). 

In particular, variance- based methods related to Sobol’s sensitivity indices are the most popular 
methods among practitioners due to their versatility and easiness of interpretation. 

Uncertainty and sensitivity analysis are crucial as they help identifying the factors (assumptions, 
variables, data, and uncertainties) at play and provide information on their influence in 
quantitatively driving the impacts of the various decision options. In particular in view of nuclear site 
characterization: 

 The impact of the sampling design is most fundamental (see section on sampling design). 

 Using advanced statistical methods for dealing with samples below detection limit can have 
an important (beneficial) impact on estimated values and should be considered in case the 
data set contains a considerable amount of results below detection limit (see section on 
overall strategy). Obviously, the potential impact depends on the objective (estimated 
quantity).  

 The following observed effects could be occasionally generalised as well, but might be 
specifically related to of specific use cases that have been tested for the validation of this 
guide (see section 6; Implementation and validation of the strategy in the following four use 
cases). 

o In the case of small data sets, the presence of outliers could clearly increase the 
uncertainty. Additional verification (process driven or error) might be necessary 
when estimations are becoming close to a decision threshold. 

o Sensitivity analysis shows that: 
 Most important uncertainties for the physical parameters estimated (e.g. 

volume categorisation, total activity) are due to spatial uncertainty 
(geostatistical simulations) and heteroscedasticity. Heteroscedasticity occurs 
more often in datasets that have a large range between the largest and 
smallest observed values, which is typically the case for radiological data.  

 The impact of sample measurement uncertainty on the volume 
categorisation is quite limited (if this uncertainty does not come from a 
systematic bias).  

 The effect on the estimated quantity (e.g. total activity or threshold) is not 
always the same as on the uncertainty.  

 The integration of non-destructive measurements in a multivariate approach 
significantly reduces uncertainties when sampling density is reduced. 

 

4.1 Robust probabilistic risk bounds 

4.1.1 Workflow 

The Bienaymé-Chebytchev, Camp-Meidell and Van Danzig inequalities can be used to estimate 
the proportion of a population that exceeds a certain threshold, in a robust way. The approach is 
very much suited for small sample sizes and all inequalities make use of the empirical mean and 
the standard deviation. The Bienaymé-Chebytchev inequality does not require hypotheses on the 
probability distribution function for the studied population, and hence is the most conservative. The 
Camp-Meidell inequality assumes that the probability distribution function follows a unimodal 
continuous probability law (e.g. uniform, Gaussian, triangular, lognormal, Weibull). It is less 
conservative, but more accurate than the Bienaymé-Chebytchev inequality. The Van Dantzig 
inequality can only be applied to the convex part of all the unimodal continuous probability laws, 
and hence is less conservative than the Camp-Meidell inequality. Even though the tail of most 
classic distribution laws is convex (e.g. exponential, triangular, Gaussian, Weibull), it can for 
instance not be applied to uniform distributions. 
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4.1.2 Example software implementations 

We are not aware of any implementations. All equations are however provided by (Pérot, et al., 
2019), and should be straightforward to implement in any programming language or spreadsheet 
software. 

 

4.1.3 Example applications 

Reference Type 

Blatman G, Delage T, Iooss B, Pérot N. 2017. Probabilistic risk bounds 
for the characterization of radiological contamination. EPJ Nuclear Sci. 
Technol. 3, 23. https://www.epj-
n.org/articles/epjn/pdf/2017/01/epjn160031.pdf  

Waste categorization & cost estimation. H2 
flow rate estimation. 

Blatman G, Iooss B. 2012. Confidence bounds on risk assessments - 
application to radiological contamination. In: Proceedings of the 
PSAM11 ESREL 2012 Conference, Helsinki, Finland. pp. 1223–1232 

Waste categorization from few 
contamination measurements of 
radiological activity in Cesium 137 of a 
large-size population of waste objects. 

Table 1. Examples of case studies that make use of this method. 

 

4.1.4 Theoretical references 

Reference 

Blatman G, Delage T, Iooss B, Pérot N. 2017. Probabilistic risk bounds for the characterization of radiological 
contamination. EPJ Nuclear Sci. Technol. 3, 23. https://www.epj-n.org/articles/epjn/pdf/2017/01/epjn160031.pdf  

Blatman G, Iooss B. 2012. Confidence bounds on risk assessments - application to radiological contamination. In: 
Proceedings of the PSAM11 ESREL 2012 Conference, Helsinki, Finland. pp. 1223–1232. 

Table 2. Theoretical references, with more details concerning this method. 

 

4.2 Bootstrap 

4.2.1 Workflow 

Bootstrap refers to a class of methods that makes use of resampling from a particular dataset, to 
obtain e.g. robust estimates on certain population parameters. In the context of nuclear site 
characterization, it is useful when the number of experimental data is limited (e.g. due to 
complexity of radioactive contamination measurements in the nuclear facility site) or when the 
exact or asymptotic distributions of data are unknown or at least very uncertain. There should be a 
minimum sample size, however. Several studies recommend a minimum number of measuring 
points of 18 to ensure a minimum amount of reliability of the results. The main advantage of this 
method is that it allows defining an empirical distribution function, which is the maximum likelihood 
estimator of the distribution for the observations when no parametric assumptions are made. 

Different variants of bootstrap exist however. Practical application of the technique usually requires 
the generation of k bootstrap samples or resamples (i.e., samples obtained by independently 
sampling with replacement from the empirical distribution). For standard error estimation, k is 
recommended to be at least 100. If k becomes very large (e.g. more than 500) there is very little 
difference between the regular bootstrap estimator and Monte Carlo approximation, and the term 
Monte Carlo bootstrap is often used. 

The double bootstrap was proposed to improve on the bootstrap bias correction for the apparent 
error rate of a linear discriminant rule. It was the first application of bootstrap iteration, which 
includes taking resamples from each bootstrap resample.  The double bootstrap confidence 
interval procedure is a further iteration to the normal bootstrap confidence interval procedure, 
which would further reduce the order of magnitude of coverage error. A two-sided coverage error 

https://www.epj-n.org/articles/epjn/pdf/2017/01/epjn160031.pdf
https://www.epj-n.org/articles/epjn/pdf/2017/01/epjn160031.pdf
https://www.epj-n.org/articles/epjn/pdf/2017/01/epjn160031.pdf
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of O (n-1) at a nominal level of , as a result of further iteration, the confidence interval of the 
normal bootstrap will further reduce the order of magnitude of the coverage error to O (n-2). 

Parametric bootstrap can be viewed as a generalization of Fisher’s maximum likelihood approach 
to the nonparametric framework. Parametric bootstrap may be used in cases where the estimator 
of interest has a distribution that is difficult to derive analytically or has an asymptotic distribution 
that does not provide a good small sample approximation, particularly for the variance, which is 
where the bootstrap is often useful. However, since the existing theory on maximum likelihood 
estimation is adequate, it is not common to see parametric bootstrap used in practice. 

 

Bayesian bootstrap can be used to make the usual Bayesian - type inferences about parameters 
based on their estimated posterior distribution, whereas, strictly speaking, the regular 
nonparametric bootstrap has only the usual frequentist’s interpretation about the distribution of the 
statistic. Bayesian bootstrap is appropriate in some problems but the prior is viewed as restrictive 
and hence it is not recommended as a general inference tool. 

The percentile method is the most obvious way to construct a confidence interval for a parameter 
based on bootstrap estimates. The main difference between random subsampling and 
bootstrapping is that bootstrapping involves sampling with replacement from the original sample 
whereas random subsampling selects without replacement from the set of all possible subsamples. 
As the sample size becomes large, the difference in the distribution of the bootstrap estimates and 
the subsample estimates becomes small. Therefore, we expect the bootstrap percentile interval to 
be almost the same as the random subsample interval. The bootstrap percentile method is not 
exact (i.e. the parameter is contained in the generated intervals in exactly the advertised proportion 
of intervals as the number of generated cases becomes large). For the median, the percentile 
method provides nearly the same confidence interval as the nonparametric interval based on the 
binomial distribution, so the percentile method works well in some cases even though it is not 
exact. 

So the percentile intervals inherit the exactness property of the subsample interval asymptotically 
(i.e., as the sample size becomes infinitely large). In the case of small samples (especially for 
asymmetric distributions), the percentile method does not work well. 

 

4.2.2 Example software implementations 

Name Type What does it do? URL 

boot Open source R 
package 

Classic parametric & non-
parametric bootstrap 

https://cran.r-
project.org/web/packages/boot/index.html  

bayesboot Open source R 
package 

Bayesian bootstrap https://cran.r-
project.org/web/packages/bayesboot/index.html  

kernelboot Open source R 
package 

Smoothed bootstrap https://cran.r-
project.org/web/packages/kernelboot/index.html  

Table 3. Example software implementations of this method. 

 

https://cran.r-project.org/web/packages/boot/index.html
https://cran.r-project.org/web/packages/boot/index.html
https://cran.r-project.org/web/packages/bayesboot/index.html
https://cran.r-project.org/web/packages/bayesboot/index.html
https://cran.r-project.org/web/packages/kernelboot/index.html
https://cran.r-project.org/web/packages/kernelboot/index.html
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4.2.3 Example applications 

Reference Type 

Zaffora B, Magistris M, Saporta G, La Torre F. 2016. Statistical 

sampling applied to the radiological characterization of historical 
waste. EPJ Nuclear Sci. Technol., 2, pp. 11. 

Bootstrap, Monte-Carlo bootstrap, to estimate 
mean, median, standard error, confidence 
intervals and bias 

Mikheenko S, Erofeeva S, Kosako T. 1994. Reconstruction of 
Dose Distribution by the Bootstrap Method Using Limited 
Measured Data. Radioisotopes, 43, 595-604. 

Regular bootstrap, bootstrap with weight 
coefficients, to estimate average, standard 
deviation, intervals, confidence level and 
weighted coefficients 

da Silva ANC, dos Santos Amaral R, dos Santos Junior JA, Vieira 
JW, Cezar Menezes RS. 2015. Statistical analysis of discrepant 
radioecological data using Monte Carlo Bootstrap Method. Journal 
of Radioanalytical and Nuclear Chemistry, 306-571. 

Monte-Carlo bootstrap, to estimate mean, 
standard deviation, confidence intervals, 
quantiles and range 

Wan H, Zhang T,·Zhu Y. 2012. Detection and localization of 
hidden radioactive sources with spatial statistical method. Ann 
Oper Res, 192, 87-104. 

Bootstrap, for the likelihood ratio statistic, 
maximum likelihood estimates of strength and 
location of a source, and the p-value of the 
likelihood ratio statistic 

Table 4. Examples of case studies that make use of this method. 

 

4.2.4 Theoretical references 

Reference 

Davison AC, Hinkley DV. 1997. Bootstrap Methods and Their Application. Cambridge University Press, Cambridge. 

Efron B. 1982. The Jackknife, the Bootstrap, and Other Resampling Plans. SIAM, Philadelphia. 

Efron B. 1983. Estimating the error rate of a prediction rule: improvements on crossvalidation. J. Am. Statist. Assoc. 
78, 316 – 331. 

Efron B, Tibshirani R. 1986. Bootstrap methods for standard errors: Confidence intervals and other measures of 
statistical accuracy. Statistical Science 1, 54 – 77. 

Efron B, Tibshirani R. 1993. An Introduction to the Bootstrap. Chapman & Hall, New York. 

Hall P. 1992. The Bootstrap and Edgeworth Expansion. Springer-Verlag, New York. 

Chernick MR. 2008. Bootstrap Methods: A Guide for Practitioners and Researchers. Second Edition. United 
BioSource Corporation. Newtown, PA. 

Table 5. Theoretical references, with more details concerning this method. 

 

4.3 Geostatistics 

4.3.1 Workflow 

A good geostatistics processing of the data always starts with a deep preliminary data analysis. 
This pre-processing step is crucial to build a consistent database. First, spatial bias due to non-
probabilistic sampling is tackled with declustering techniques (spatial weighting). The joint analysis 
of the statistical distribution (histogram) may identify heterogeneous populations (spatial, temporal, 
units, sample support, …) that need to be corrected or separated for a proper understanding. 
Regularization and deconvolution may be used to take support differences into account. Similarly, 
a skewed distribution requires a non-linear data transformation (indicator or logarithm eventually 
but more interestingly Gaussian anamorphosis). In the presence of a correlated variable, a 
multivariate processing can be implemented at all stages, and is very useful if the auxiliary data is 
denser than that of the primary variable. 

The heart of geostatistics is the analysis and the modeling of the spatial continuity using the 
variogram. A nugget effect (variability at small scale) can be related to the phenomenon itself, to 
positioning uncertainty or measurement variability. Anisotropy is generally relevant in 3D, and also 
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in 2D if there is a specific direction for the phenomenon. An unbounded variogram may point to the 
necessity of trend modelling (using external drift or a universal kriging approach). In a multivariate 
approach and when primary data is very scarcely sampled, bundled processing can be selected 
(spatial structure from auxiliary variable or external drift (generalized covariance)). 

The first output of geostatistics is the interpolation, or the kriging estimate. It can be a punctual or a 
block estimate. More sophisticated regular change-of-support models can also be used. The 
interpolation neighborhood can be global or moving, also considering anisotropy, and the mean of 
the variable can be known or not (i.e. simple vs ordinary kriging). In the multivariate case, one uses 
co-kriging. Things can also be simplified, however, in which case univariate kriging combined with 
e.g. principal component analysis (i.e. principal component kriging) can provide an adequate 
solution as well. Finally, different degrees of Bayesian inference can be integrated in the 
geostatistical approach, for instance for accounting for prior information and the uncertainty on the 
variogram. 

In addition to the kriging estimate, the kriging error variance is a second output. Depending on the 
geostatistical model, non-linear estimates can be calculated. Risk of exceeding a threshold with 
prior Gaussian anamorphosis (conditional expectation) is specifically relevant for radiological waste 
classification. Another approach is to compute conditional simulations (which can be seen as 
spatially consistent Monte-Carlo simulations). They generally require prior Gaussian 
anamorphosis. Post-processing of these simulations enables regular (grid) and irregular (polygon) 
change-of-support modelling (averaging on a larger support) as well as any statistics (mean, 
variance, probability of exceeding a threshold). Global estimates (volumes according to a 
threshold, source term) are obtained in the same way. 
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4.3.2 Example software implementations 

Name Type What does it do? URL 

gstat Open source 
R package 

Variography, simple, 
ordinary and universal 
point or block (co)kriging, 
sequential Gaussian or 
indicator (co)simulation 

https://cran.r-project.org/package=gstat  

geoR Open source 
R package 

Traditional, likelihood-
based and Bayesian 
methods 

https://cran.r-project.org/package=geoR  

georob Open source 
R package 

Robust and Gaussian 
(Restricted) Maximum 
Likelihood methods. 

https://cran.r-project.org/package=georob  

RandomFields Open source 
R package 

Inference on and the 
simulation of Gaussian 
fields. 

https://cran.r-project.org/package=RandomFields  

mGstat Matlab library Structural analysis, 
kriging (simple, ordinary, 
with external drift), 
conditional simulations, 
3D and spatio-temporal 

http://mgstat.sourceforge.net/ 

Earth 
Volumetric 
Studio 

Commercial Kriging, indicator kriging 
(for geology), probability 
of exceeding a threshold, 
2D and 3D  

https://www.ctech.com/products/earth-volumetric-
studio/ 

Geostatistical 
Analyst 

Commercial Only 2D, variography, 
trend removal, simple, 
ordinary, universal, 
indicator, and disjunctive 
kriging and co-kriging  

https://www.esri.com/en-
us/arcgis/products/geostatistical-analyst/ 

Isatis Commercial Exploratory data analysis, 
variography, trend, 
exhaustive set of kriging 
and simulations 
techniques, multivariate, 
computation faults, risk 
curves 

https://www.geovariances.com/en/software/isatis-
geostatistics-software/ 

Kartotrak Commercial Exploratory data analysis, 
variography, punctual 
and block kriging, turning 
band simulations, 
multivariate, risk curves 

https://www.geovariances.com/en/software/kartotrak-
software-contamination-characterization/ 

SADA  Variography, ordinary 
kriging, indicator kriging, 
and co-kriging 

https://www.sadaproject.net/download.html 

SGeMS  Variography, simple 
kriging, ordinary kriging, 
kriging with external drift, 

block kriging, and 
indicator kriging. 
Extensive set of 
conditional simulation 
methods 

http://sgems.sourceforge.net/ 

Visual Sample 
Plan 

Open source Only 2D, variography, 
simple, ordinary and 
block kriging 

https://vsp.pnnl.gov/ 

Table 6. Example software implementations of this method. 

https://cran.r-project.org/package=gstat
https://cran.r-project.org/package=geoR
https://cran.r-project.org/package=georob
https://cran.r-project.org/package=RandomFields
http://mgstat.sourceforge.net/
https://www.sadaproject.net/download.html
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4.3.3 Example applications 

Reference Type 

Desnoyers Y. 2015. Sampling considerations for characterization of radioactive 
contamination using geostatistics. In Proc. of World Conference on Sampling and 
Blending, Bordeaux, France. 

Sampling considerations 

Desnoyers Y, Dubot D. 2014. Characterization of radioactive contamination using 
geostatistics. Nuclear Engineering International 59, 716, 16-18. Sidcup, United 
Kingdom. 

General geostatistical 
approach and sampling 
optimization 

Desnoyers Y, Chilès J-P, Dubot D, Jeannée N, Idasiak J-M. 2010. Geostatistics for 
radiological evaluation: study of structuring of extreme values. In: Stochastic 
Environmental Research and Risk Assessment 25, 8 (2011), 1031-1037 

Spatial structure of extreme 
values 

Bechler A, Romary T, Jeannée N, Desnoyers Y. 2013. Geostatistical sampling 
optimization of contaminated facilities. In: Stochastic Environmental Research and 
Risk Assessment 27, 8 (2013), 1967-1974. 

Sampling optimization 

Boden S, Rogiers B, Jacques D. 2013. Determination of Cs-137 contamination depth 
distribution in building structures using geostatistical modelling of ISOCS 
measurements. Applied Radiation and Isotopes 79, 25-36. 

Combination of different 
measurement supports. 

Table 7. Examples of case studies that make use of this method. 

 

4.3.4 Theoretical references 

Reference 

Chilès JP, Delfiner P. 1999. Geostatistics – Modeling Spatial Uncertainty. Wiley series in Probability and Statistics, 
New-York. 

Journel AG, Huijbregts CJ. 1978. Mining Geostatistics. Academic Press, London, 600p. 

Isaaks EH, Srivastava RM. 1989. An Introduction to Applied Geostatistics. Oxford University Press, New York, 561 p. 

Goovaerts P. 1997. Geostatistics for natural resources evaluation. Oxford University Press. 

Table 8. Theoretical references, with more details concerning this method. 

 

4.4 MARSSIM 

4.4.1 Workflow 

The MARSSIM's objective is to describe a consistent approach for final status surveys applied to 
buildings and surface soils in order to meet established radiation dose or risk-based release 
criteria, while encouraging an effective use of resources. The basic principles consists in 
classifying areas according to their impact and performing systematic or judgmental measurements 
with an appropriate coverage. The MARSSIM recommends the use of nonparametric statistical 
tests to evaluate data (e.g. Sign test, Wilcoxon Rank Sum test). The difference between these two 
tests is the presence or absence of radionuclides of interest in the environment. They are 
nonparametric tests, which makes it possible to treat variables whose statistical distribution law is 
not explicit (the real values rarely follow a Gaussian distribution). They are also based on order 
statistics, which allows the integration of values at the limit of detection if they do not represent 
most of the data. 

The underlying assumptions are a spatial independence of the values and a not too dissymmetrical 
statistical distribution (histogram). These tests are particularly interesting when the average value 
is below the threshold of interest, with a few point values above. 

The null hypothesis is made to assume that the median value of the activity levels is greater than 
the reference value. The test aims to reject this hypothesis for a given confidence level and thus 
concludes that the median is not statistically different from the reference threshold or below that 
threshold. If the data are not too dissymmetrical, it is possible to draw the same conclusion with the 
mean value. 
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4.4.2 Example software implementations 

Name Type What does it do? URL 

Visual 
Sampling Plan 

Freeware Sign and WRS tests 

Other statistical tests 

https://vsp.pnnl.gov/ 

Kartotrak Commercial Sign and WRS tests 

Wilks formula 

https://www.geovariances.com/en/software/kartotrak-
software-contamination-characterization/ 

stats Open source R 
package 

wilcox.test: WRS test. https://www.r-project.org/ 

Table 9. Example software implementations of this method. 

 

4.4.3 Theoretical references 

Reference 

Multi-Agency Radiation Survey and Site Investigation Manual. NUREG-1575, Rev.1. EPA-402-R-97-016, Rev. 1. 
DOE/EH-0624, Rev. 1 (2001). 

Mann HB, Whitney DR. 1947. On a Test of Whether one of Two Random Variables is Stochastically Larger than the 
Other. Annals of Mathematical Statistics. 18, 1, 50–60. 

Wilcoxon F. 1945. Individual comparisons by ranking methods. Biometrics Bulletin. 1, 6, 80–83. 

Table 10. Theoretical references, with more details concerning this method. 

 

4.5 Wilks method 

4.5.1 Workflow 

The Wilks formula computes a quantile (or a tolerance interval) with a given confidence level from 
an i.i.d. (random) sample, or computes the minimal sample size to estimate a quantile (or a 
tolerance interval) with a given confidence level (cf. § 5.2. (Pérot, et al., 2019)). This method based 
on order statistics allows the user to determine the required sample size precisely in order to 
estimate, for a random variable, a quantile of order α with a confidence level β. The great interest 
of this method is that it is robust and it requires no hypothesis. 

 

4.5.2 Example software implementations 

Name Type What does it do? URL 

MISTRAL Open source R 
package 

Computing quantile with Wilks 
formula (quantileWilks) 

https://cran.r-
project.org/package=mistral  

Table 11. Example software implementations of this method. 

 

4.5.3 Example applications 

Reference Type 

Blatman G, Delage T, Iooss B, Pérot N. 2017. Probabilistic risk bounds for the 
characterization of radiological contamination. EPJ Nuclear Sci. Technol. 3, 23. 
https://www.epj-n.org/articles/epjn/pdf/2017/01/epjn160031.pdf  

Waste categorization 
& cost estimation. H2 
flow rate estimation. 

Pérot N. 2018. Sampling strategy for dihydrogen flow rate characterization of radioactive 
waste, DEM 2018, Avignon. 

H2 flow rate 
estimation 

Table 12. Examples of case studies that make use of this method. 

https://cran.r-project.org/package=mistral
https://cran.r-project.org/package=mistral
https://www.epj-n.org/articles/epjn/pdf/2017/01/epjn160031.pdf
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4.6 Regression 

4.6.1 Workflow 

Regression encompasses a large range of methods, and many of them can be applicable in the 
field of initial nuclear site characterization. All methods however share the basic goal of estimating 
a certain response variable based on one or more predictor variables. In most cases, the response 
variable corresponds to the variable of interest discussed in Section 2.2. We consider here two 
types of predictor variable(s), but their treatment is mathematically the same: Those that are 
related to the spatial location (i.e. spatial coordinates in the broadest sense), and other covariates 
that teach us something on the predictor, irrespective of the spatial location. This corresponds to 
the trend and multivariate cases, used to structure the methods in this document. Hence, the same 
methods might be relevant in the presence of trends and other multivariate cases. 

In general, linear models are very well suited for the majority of problems. Generalized linear 
models extend this class of models to response variables with non-Gaussian error distributions. It 
is worth mentioning logistic and Poisson regression here, both part of the generalized linear model 
class, as they are relevant for e.g. classification and working with count data. 

When linear models are not able to capture the studied predictor-response relations, generalized 
additive models provide another extension to capture non-linearity. If the functional form of the 
relationship is (partly) known, however, non-linear regression can also be used to estimate the 
unknown coefficients. If robustness is required, robust linear models can be used to decrease the 
impact of outliers, and Bayesian regression variants exist for incorporating prior knowledge in case 
of small datasets. 

A final set of methods is designed to handle cases where predictor variables are heavily correlated, 
and this multicollinearity would affect the outcome and uncertainty estimates of the standard 
approaches. Dimensionality reduction can be built into the regression approach, as e.g. with 
principal component regression or partial least squares (the latter is preferred when the response 
variable is correlated with one or more of the minor factors/components). Another approach is to 
put restrictions on the regression coefficients with so-called shrinkage methods: Ridge regression 
tries to keep the regression coefficients small, whereas the lasso approach additionally may set 
some coefficients to zero, effectively selecting a subset of all predictors in the model. The elastic 
net approach combines the ridge and lasso methods. 

The field of machine learning offers many more techniques that might be appropriate if linear 
regression and its extensions fail at capturing the predictor-response relationships. However, 
typically, much more data is required to use these methods, which is likely not available from initial 
nuclear site characterization, and constraint environments. 

 

4.6.2 Example software implementations 

Name Type What does it do? URL 

MASS Open source R 
package 

Linear regression and graphical 
analysis, robust linear models 

https://cran.r-
project.org/package=MASS  

e1071 Open source R 
package 

Regression diagnostics https://cran.r-

project.org/package=e1071  

stats Open source R 
package 

Linear models, Generalized linear 
models 

https://www.r-project.org/ 

gam Open source R 
package 

Generalized additive models https://cran.r-project.org/package=gam  

mgcv Open source R 
package 

Generalized additive models https://cran.r-
project.org/package=mgcv  

glmnet Open source R 
package 

Penalized linear models (shrinkage 
methods) 

https://cran.r-
project.org/package=glmnet  

https://cran.r-project.org/package=MASS
https://cran.r-project.org/package=MASS
https://cran.r-project.org/package=e1071
https://cran.r-project.org/package=e1071
https://cran.r-project.org/package=gam
https://cran.r-project.org/package=mgcv
https://cran.r-project.org/package=mgcv
https://cran.r-project.org/package=glmnet
https://cran.r-project.org/package=glmnet
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Table 13. Example software implementations of this method. 

 

4.6.3 Example applications 

Reference Type 

Zaffora B, Magistris M, Saporta G, La Torre FP. 2016. Statistical 

sampling applied to the radiological characterization of historical waste. 
EPJ Nuclear Sci. Technol. 2, 34 

Linear regression for scaling factors 

Zaffora B. 2017. Statistical analysis for the radiological characterization 
of radioactive waste in particle accelerators. PhD thesis. 
https://cds.cern.ch/record/2290521/files/CERN-THESIS-2017-194.pdf  

Multiple linear regression for scaling factors 

Zaffora B, Magistris M, Chevalier J-P, Luccioni C, Saporta G, et al. 
2017. Appl. Radiat. Isot. 122, 141-147. 

Regression for scaling factors 

Table 14. Examples of case studies that make use of this method. 

 

4.6.4 Theoretical references 

Reference 

Rawlings JO, Pantula SG, Dickey DA. 1998. Applied regression analysis - A research tool. Springer-Verlag New York. 
660 pp 

James G, Witten D, Hastie T, Tibshirani R. 2013. An introduction to statistical learning – with Applications in R. 
Springer-Verlag New York. 426 pp 

Hastie T, Tibshirani R, Friedman J. 2009. The elements of statistical learning – Data mining, inference, and prediction, 
Second edition. Springer-Verlag New York. 745 pp 

Table 15. Theoretical references, with more details concerning this method. 

 

4.7 Distribution fitting 

4.7.1 Workflow 

The first step of fitting a distribution on a data set is to represent its histogram, which is very 
informative because its shape should orientate the selection of the probability distribution (uniform, 
Gaussian, lognormal, Gumbel, exponential, Weibull, …). If a selection is possible, the distribution 
parameters have to be determined from the data. To do so, the main parametric methods are the 
moment method, the maximum likelihood method and the L-moment method. The next step, which 
is very important, consists in validating the distribution fitting onto the data: graphical validation with 
probability-probability plot and/or quantile-quantile plot; statistical tests like Kolmogorov-Smirnov 
Test (more sensitive around the median and for outliers); Cramer Von Mises Test (better to 
account for the whole data set) and Anderson-Darling Test (better sensitivity for extreme values) 
(cf. § 4.1. of (Pérot, et al., 2019). 

 

4.7.2 Example software implementations 

Name Type What does it do? URL 

MASS Open source R 
package 

Distribution fitting (fitdistr) https://cran.r-
project.org/package=MASS  

Matlab 
(Mathworks) 

Statistics and 
curve fitting 
toolboxes 

Distribution fitting https://fr.mathworks.com/  

Table 16. Example software implementations of this method. 

https://cds.cern.ch/record/2290521/files/CERN-THESIS-2017-194.pdf
https://cran.r-project.org/package=MASS
https://cran.r-project.org/package=MASS
https://fr.mathworks.com/
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4.7.3 Example applications 

Reference Type 

Blatman G., Delage T., Iooss B., Pérot N (2017), Probabilistic risk bounds for 
the characterization of radiological contamination, EPJ Nuclear Sci. Technol. 3, 
23. https://www.epj-n.org/articles/epjn/pdf/2017/01/epjn160031.pdf. 

Waste categorization & cost 
estimation. H2 flow rate estimation. 

Table 17. Examples of case studies that make use of this method. 
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5 List of approaches for sampling design 

If the objective cannot be achieved with the available data, more information is required, and a 
proper sampling design should be made before collecting new data. There exists a variety of 
different ways to approach this, and the main drivers here are the available data, the type of 
problem at hand (revealed by the exploratory data analysis), the outcome of the data analysis, and 
the reason why the objective cannot be achieved. As many factors therefore influence what would 
be the best approach, we take a top down approach here, and describe the individual approaches 
briefly in this section, discussing typical cases where they are commonly applied. Some aspects 
related to sample locations, size and support are discussed first below however. 

In case it would not be clear which method to use, or if multiple methods seem to be equally 
adequate based on the Venn diagram, it is recommended to go through the brief introductions first. 
If it would still be unclear what method to use, further reading is recommended, or the 
consultation of a more experienced person. 

Note that the list of approaches discussed here is non-limitative. Sampling approaches more 
applicable in alterntive fields were not considered, and a more advanced set of approaches, which 
are less commonly used, but might be useful in certain cases, is discussed separately under 
“optimization”. 

 

Sample locations 

 

A Venn diagram providing an overview of different sampling design approaches is provided in 
Figure 5. The expert can select one or more suitable methods from the Venn diagram. The same 
problem can be tackled using various methods. Often, a combination of approaches is being 
implemented. In any case, the sample locations should be selected so that subsequent 
extrapolation during data analysis is avoided. Many characterisation projects have the tendency to 
focus their sampling efforts on the highest affected areas, neglecting areas with lower activity 
concentration levels. Nonetheless, it is necessary to sample the supposedly least impacted zones 
as well as the most impacted zones to achieve a realistic understanding of the statistical 
distribution of the activity concentration. Confirming some non-impacted areas is often as important 
as (or even more important than) confirming historically impacted areas. From the point of view of 
waste volume management, transition zones are more critical, since it is difficult to categorize them 
with respect to the reference thresholds. Uncertainty being the most important in these areas for 
proper delineation (and limiting misclassification errors), the sampling distribution should favour 
them over other areas that only require confirmation of impacted or non-impacted. We make a 
distinction here between probabilistic and non-probabilistic approaches, and designs with equal or 
non-equal probability of selection: 

 

1. Probabilistic sampling: We use the term here to indicate sampling strategies where all 
elements in a population have a certain probability to be selected. This probability should 
be known, or easily determined, so proper inference on the total population can be 
made. 

2. Non-probabilistic sampling: We consider an approach to be non-probabilistic when 
certain elements in a population have a zero probability of being selected, or the probability 
cannot be determined. Hence, a non-probabilistic sample cannot be used to do inference 
on the total population, without making assumptions, and is only targeted at a specific 
part of it. 

3. Equal probability of selection: We use the term here to indicate sampling strategies in 
which all obtained samples had the same probability of being selected. The part of the 
population considered for sampling is therefore explored in a uniform way. 

4. Unequal probability of selection: We use the term here to indicate sampling strategies in 
which the obtained samples had different probabilities of being selected. The part of the 
population considered for sampling is therefore explored in a non-uniform way. 
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Intersections in the Venn diagram indicate here that the details of the respective sampling design 
approaches can be chosen such that they can fall both under the probabilistic or non-probabilistic 
classes, and the equal or unequal probability of selection classes. The effective implementation of 
a sampling design approach can however not be probabilistic and non-probabilistic, or equal and 
unequal probability of selection at the same time. 

The different approaches listed in Figure 5 are discussed in greater detail below. It should be noted 
here however, that in practice, sampling design consists most often of a combination of these 
approaches, as objectives and/or sampling targets are often multifold in real life. 

 

 

Figure 5. Sampling design Venn diagram. See Annex D for a larger version. 

 

Sample size or density 

 

The sample size can be determined according to the estimator (mean, proportion, quantile, etc.) 
used and the confidence interval required. In general, the sample size can be obtained from the 
formulation of the error margin resulting from the maximum difference between the observed 
sample mean and the true value mean of the population (cf. §2.3.2, (Pérot, et al., 2019)). 

Sometimes because of access constraints, measurement costs are such that it is unconceivable to 
achieve many measurements, but it remains important to assess the sample representativeness 
before any statistical analysis. The sample representativeness can be studied through the 
evolution of bootstrap statistical indicators like the mean or the standard deviation with replicate 
size varying from a minimum to the size of the reference sample (cf. §4.2, (Pérot, et al., 2019)). If 
we observe a stabilization of the bootstrap estimator and its confidence interval, we can deduce 
the data set size is correct. Otherwise, more measurement data are required. Wilks method is 



D3.7 - Statistical approach guide 

 
 

GA n°755554   Page 35 of 45 

another way to estimate the size of the data set required to estimate quantiles with a given 
confidence level (cf. § 4.5, (Pérot, et al., 2019)).  

Defining sample size might be challenging when several physical parameters need to be assessed 
(i.e. total activity, activity concentration, thresholds) based on various data sources that might not 
always be representative. Moreover, a data set might contain considerable amounts of values 
below detection limit and confidence levels required might not always be unequivocally defined. 
Reducing the size generally leads to an increasing uncertainty and could result in extreme 
under/over estimation of the volume exceeding a threshold. Such deviations can be strongly 
reduced by combining the limited higher quality and costly primary dataset (e.g. in-lab sample 
measurements) with a large cheap secondary data set (e.g. in-situ measurements).  

 

Sample support 

 

In certain cases, the sample support is not really an issue, as the population consists of discrete 
objects that are measured in their entirety. In many cases however, samples have to be taken from 
a continuum of material with a certain spatial support (i.e. length, area or volume). The number of 
possible sample locations is infinite in such a case, and an appropriate sample support should be 
defined. The selection of a sample support can be influenced by different factors, amongst others:  

 The amount of material required in the measurement procedure. 

 The selective decontamination spatial support (if decontamination methods are known a 
priori). 

 The relation sample support vs cost. 

 

When the sample support would be far larger than the amount of material required for performing a 
measurement, homogenization or subsampling techniques can be considered to effectively 
homogenize the contents of the sample, and reduce the amount of measurements required. 

If the most interesting sample support is of a practically infeasible magnitude, composite sampling 
techniques can be used for homogenization across the targeted support, resulting in a manageable 
set of samples that carry the targeted information. 

Note that when samples with different supports are collected, measured and combined for a 
certain analysis, prior regularization or correction for the support effect should be performed. 

 

5.1 Random sampling 

Random sampling is the most basic probabilistic way of sampling, where all elements in a 
population have the same probability to be selected. It offers a great starting point when little is 
known about the population, the presence of trends or a spatial structure is not expected, and 
there are no clear subpopulations. In principle, it is a uniform way of sampling from the sample 
space, but systematic and Latin hypercube sampling are more efficient in that respect. 

 

5.2 Systematic sampling 

In systematic sampling (a.k.a. regular or grid sampling), the population is ordered in a certain way, 
and every kth element is selected. The starting point should however be random, so all elements 
would have a certain probability of being selected (i.e. a probabilistic approach). In a spatial 
context, ordering is often done using the spatial coordinates, and the term grid sampling is often 
used as well. In many cases, systematic sampling offers a more homogeneous spread of samples 
over the population than random sampling, but it might be dangerous in case of periodicity, with 
periods equal or close to the sampling interval. It is a good option for characterizing spatial 
structure, or when this would be known a priori, it can be used to optimize the sample spacing. 
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5.3 Stratified sampling 

Stratified sampling can be used in case there are clearly different subpopulations. Every 
subpopulation is sampled independently, to make sure the desired balance between 
subpopulations is obtained in the final sample. Sampling within a subpopulation is often done 
randomly, but virtually any approach can be applied. When the sample sizes for all subpopulations 
are equal, we are dealing with a balanced design. For making inference on the total population, 
however, sample sizes proportional to the subpopulation sizes make more sense (= special case 
of probability proportional to auxiliary variable sampling). 

 

5.4 Cluster sampling 

Cluster sampling also deals with the case of different subpopulations. In contrast to stratified 
sampling, however, only a subset of all subpopulations is sampled in a random way. The selected 
subpopulations can be sampled exhaustively, or with any other sampling approach. If sampling of 
all subpopulations (i.e. a stratified approach) would be infeasible, cluster sampling offers an 
alternative with a larger set of samples, but larger risk of bias. 

 

5.5 Judgemental sampling 

When samples are chosen based on expert judgement, we use the term judgemental sampling 
(a.k.a. purposive sampling). It is often very useful to explore the behaviour of elements in a 
population that deviate from the dominant, overall pattern in that population. As it does not tell us 
much about the total population, however, it is often applied in combination with probabilistic 
sampling approaches. 

 

5.6 Targeted sampling 

Targeted sampling refers to the case where subpopulations are selected using a judgemental 
approach, after which another sampling approach can be used for selecting elements within that 
subpopulation. Hence, it cannot be used to make inferences on the total population. However, 
when the judgemental selection is appropriate, it might still contain the entire relevant part of a 
population. An example is sampling within a certain distance from a source of contamination or 
activation. If the new data would reveal a trend suggesting that the neglected part of the population 
is far below any regulatory thresholds, still relevant inferences can be made with the appropriate 
assumptions. 

 

5.7 Convenience sampling 

Convenience sampling (a.k.a. accidental, grab or opportunity sampling) refers to the case where 
the selection of elements from a population is done because they are readily available, or the most 
convenient to sample. Hence, this is a non-probabilistic approach, and might involve quite some 
bias. It can be useful however for obtaining a quick first set of estimates on a population that is 
expected to be reasonably homogeneous, or that should exhibit a clear, simple trend. 

 

5.8 Circular grid sampling 

Circular grid sampling is a form of systematic sampling, in a spatial context, where a polar 
coordinate system is used rather than a Cartesian one. This is useful in the context of point 
sources of contamination, and an isotropic or unknown migration direction. 
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5.9 Latin hypercube sampling 

Latin hypercube sampling is similar to systematic sampling, with the difference that a random 
sample is taken in every set of k elements, instead of retaining every kth element. In this way, it is 
more robust with respect to periodicity than systematic sampling. An alternative way of putting this 
is that for every kth element in a systematic design, we choose the element at a random distance 
(with a given maximum, typically k/2) from it. 

 

5.10 Profile sampling 

Profile sampling (a.k.a. line-intercept or transect sampling) is only applicable in the context of 
trends or spatial structure, and aims at selecting a set of samples on a line (or close to it), or at 
least some path throughout the population, whereby the retained set of samples is representative 
in some kind of way for the entire population. It can be generalized as systematic sampling along a 
lower-dimensional path through the population (e.g. sampling along a plane through a 3D 
population). It is a non-probabilistic non-uniform way of sampling, but when a trend is indeed 
revealed inference on the total population can be made under the assumption that the trend is valid 
everywhere. In terms of spatial structure, it offers an efficient approach for quantifying the spatial 
structure, which can be used in a later iteration for more appropriate sampling design. 

 

5.11 Quota sampling 

Quota sampling is similar to stratified sampling. For sampling within a subpopulation, however, a 
non-probabilistic approach like judgement sampling is used rather than a probabilistic one like 
random sampling, which is typically done in a stratified approach. 

 

5.12 Probability proportional to auxiliary variable sampling 

Probability proportional to size sampling is the most used variant of sampling based on an auxiliary 
variable (uncertainty sampling is another). In this case, the auxiliary variable is the size of a given 
subpopulation, or element, which represents its relative contribution to the population as a whole. 
In general, however, the auxiliary variable can be any kind of information that could be used for 
obtaining a more representative or targeted sample. An example is for instance the uncertainty 
related to a specific element in a population. Sampling elements with larger uncertainty 
preferentially (i.e. using a sampling probability proportional to the uncertainty in some way), will 
reduce the uncertainty on the population as a whole more efficiently. Another example is the 
distance to a certain decision threshold. Sampling elements with large uncertainty, but still far away 
from a decision threshold makes no sense, while sampling elements with small uncertainty, 
incorporating the decision threshold, can better inform decision-making. 

 

5.13 Exhaustive sampling 

In general, a sampling design aims at providing as much as information, with as little as samples 
possible. In certain cases however, it might be more convenient to just sample all elements within 
a population. This is especially true when the performed measurements are cheap and quick, and 
might provide the necessary data to meet the objectives, or at least provide some secondary 
information (e.g. correlated variables, or measurements on a different support) that can contribute 
to reaching the goal. 
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5.14 Optimization 

Sampling strategy sometimes evolves into an iterative or adaptive approach. Based on a first 
sampling data set, it can be necessary to collect additional points in order to improve the initial 
estimation and/or to reduce related uncertainties. This sampling optimization is then strongly 
impacted by the characterization objective and can follow different rules: 

 Statistics: add random points to improve statistics. 

 Spatial clustering: add points around initial values that exceed a threshold (or any other 
criterion) to improve delineation. 

 General optimisation: find the best set (number and location) of additional points using 
computer algorithms (simulated annealing, genetic algorithm…) for a given objective 
function. 

  



D3.7 - Statistical approach guide 

 
 

GA n°755554   Page 39 of 45 

6 About 

The STRATEGIST web tool has been developed within work package 3 of the INSIDER EU 
Horizon 2020 project and received funding from the Euratom Research and Training Programme 
2014-2018 under grant agreement No 755554. 

 

The development consisted of: 

1. Providing an overview of the available sampling design methods and state-of-the-art 
techniques. 

2. Development of a strategy for data analysis and sampling design, referring to state-of-the-
art techniques, and provide guidance to the end user through an application in which the 
strategy contents can be explored in a user-friendly way. 

3. Implementation and validation of the strategy in the following four use cases: 
a. Use case 1 concerns two tanks (VA001 and VA002), each about 50 m3 in volume, 

containing low level liquid waste (LLLW) and located in the liquid waste storage 
facility at the Joint Research Centre site of Ispra, Italy. 

b. Use case 2 involves the biological shield of the Belgian Reactor 3 (BR3), a pilot 
pressurized water reactor of the SCK CEN (Belgian Nuclear Research Centre). 

c. Use case 3a relates to a nuclear facility that was devoted to radiochemistry on 
trans-uranium elements. It was under operation until 1992 on a CEA site in France. 

d. Use case 3b covers the graphite moderator and reflector (about 1300 tons) of the 
G2 UNGG reac-tor localized at the CEA site of Marcoule. 

The lessons learnt are summarized in: 

 The following document. 

 The following publication.  
4. Designing the STRATEGIST web tool: blueprint of the tool. 
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Annex A: Overall strategy flow chart 
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Annex B: Data analysis & sampling design flow chart 
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Annex C: Data analysis Venn diagram 
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Annex D: Sampling design Venn diagram 

 

 


